ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
Tyler R. Steiner, Richard H. Howard
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1745-1755
Technical Paper | doi.org/10.1080/00295450.2022.2072652
Articles are hosted by Taylor and Francis Online.
A high-temperature, steady-state, in-pile experiment was developed to simulate prototypical nuclear thermal propulsion conditions. The experimental development of the resistively heated test apparatus involved spatially scaling the device to a larger heated region from a previous smaller out-of-pile prototype. A series of tests and investigations were conducted to replicate the smaller out-of-pile system’s success of achieving 2500 K. However, limitations within the larger assembly were identified; specifically, the heater filament design does not scale well. The larger assembly can reliably generate usable temperature levels from room temperature up to those exceeding 1300 K for hours. It can briefly sustain a usable 1800 K. The larger system is achieving temperatures over 2500 K, but these are localized and unable to be monitored in the current design. The achieved temperature levels remain suitable for testing various components considered for a nuclear thermal rocket. However, due to the limitations of the current heater filament, it is recommended that the apparatus be redesigned to utilize a rigid heating element similar to that used during the Radioisotope Propulsion Technology Program (Project POODLE) in the 1960s.