ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Tyler R. Steiner, Richard H. Howard
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1745-1755
Technical Paper | doi.org/10.1080/00295450.2022.2072652
Articles are hosted by Taylor and Francis Online.
A high-temperature, steady-state, in-pile experiment was developed to simulate prototypical nuclear thermal propulsion conditions. The experimental development of the resistively heated test apparatus involved spatially scaling the device to a larger heated region from a previous smaller out-of-pile prototype. A series of tests and investigations were conducted to replicate the smaller out-of-pile system’s success of achieving 2500 K. However, limitations within the larger assembly were identified; specifically, the heater filament design does not scale well. The larger assembly can reliably generate usable temperature levels from room temperature up to those exceeding 1300 K for hours. It can briefly sustain a usable 1800 K. The larger system is achieving temperatures over 2500 K, but these are localized and unable to be monitored in the current design. The achieved temperature levels remain suitable for testing various components considered for a nuclear thermal rocket. However, due to the limitations of the current heater filament, it is recommended that the apparatus be redesigned to utilize a rigid heating element similar to that used during the Radioisotope Propulsion Technology Program (Project POODLE) in the 1960s.