ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Mustafa H. Almadih, T. Almudhhi, S. Ebrahim, A. Howell, G. R. Garrett, S. M. Bajorek, F. B. Cheung
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1290-1300
Technical Paper | doi.org/10.1080/00295450.2021.2000558
Articles are hosted by Taylor and Francis Online.
In this study, boiling regimes have been identified and analyzed along with the corresponding vapor-liquid interfacial morphologies and heat transfer behaviors during quenching of a heated rod using an acoustic measurement technique. The quenching experiments are performed by using cylindrical test samples that are embedded with thermocouples. The experimental work includes investigating the whole range of pool boiling regimes from film boiling through transition boiling to nucleate boiling using Python’s tools of signal processing. The boiling signals are recorded by a special hydrophone (i.e., the HTI-96-Min Exportable, High Tech, Inc.) to register the different sound waves generated by boiling under the water. This special hydrophone is capable of working in boiling water to record high- and low-frequency signals in subcooled pool boiling. The latter has many applications, such as the operations of advanced nuclear reactors, chemical processing, power generation, etc. In this work, the technique of signal processing is employed to identify the boiling regimes and to seek a new understanding of the boiling dynamics, particularly vapor-liquid interfacial morphologies, by applying a new tool for signal processing. Physically, each boiling regime should have a characteristic dominant acoustic signal that can be identified. By correlating the acoustic signatures with the boiling heat fluxes in various regimes, the minimum and maximum heat fluxes measured during the quenching of the cylindrical samples can be identified from the recorded acoustic signals during subcooled pool boiling.