ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
Chun-Yen Li, Kai Wang, Marco Pellegrini, Nejdet Erkan, Koji Okamoto
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 843-859
Technical Paper | doi.org/10.1080/00295450.2021.1973181
Articles are hosted by Taylor and Francis Online.
For the Japan Sodium-cooled Fast Reactor (JSFR), should the hypothesized core disruptive accident (CDA) happened, the in-vessel retention (IVR) will be the main target to achieve. In the heat-removal phase of the CDA, the debris bed will be piled up on the debris catcher. The capability of stable cooling and avoiding recriticality on the debris bed will be the main issues for achieving IVR. Previous studies have shown that the homogeneous debris bed can attain stable cooling and eliminate the probability of recriticality. Besides, self-leveling, which is a mechanism redistributing and flattening the debris bed by the natural circulation or vaporization from surrounding coolant, can further suppress the debris bed’s thickness to below the coolable thickness. However, in the real situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles start to redistribute due to self-leveling, the debris bed will form a heterogeneous density distribution. Under this scenario, the capability of coolability and the probability of recriticality could deviate from the previous study. Therefore, it is necessary to obtain a verified coupled model between the computational fluid dynamics (CFD) and the discrete element method (DEM) to track the mixed-density debris particles’ movement under the phenomenon of self-leveling. In this paper, first, the experiments simulating self-leveling on the mixed-density particle bed are performed. Afterward, the random heavy particle movement’s experimental data are extracted and transformed into the statistics form as the benchmark materials. Finally, the CFD-DEM model is validated via a series of sensitivity studies. The verified CFD-DEM can be expected to simulate the self-leveling behavior on the mixed-density debris bed and the real reactor case.