ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
Sudipta Saha, Jamil Khan, Travis Knight, Tanvir Farouk
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2021.1936863
Articles are hosted by Taylor and Francis Online.
A global model is proposed to simulate the drying process of used nuclear fuel assemblies under vacuum drying conditions. The transient model consists of a coupled mass and energy conservation equation with appropriate source and sink terms. The classic Hertz-Knudsen expression is employed to resolve the evaporation rate and the associated water mass depletion in the system. Both latent heat of vaporization and residual decay heat are considered as sink and source in the energy conservation, respectively. The model is employed to simulate vacuum drying of spent nuclear fuel rod storage systems. Multistage stepwise vacuuming of the system is emulated, and several parametric studies are conducted to identify their role in the drying process. The predicted temporal profiles show that the proposed model is able to capture qualitative trends of the water removal rate, hence the dryness level of the system. The model prediction is also compared against experiments where the amount of residual water after a standard vacuum drying procedure is quantified. The predictions are found to compare favorably with the experimental measurements.