ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Sudipta Saha, Jamil Khan, Travis Knight, Tanvir Farouk
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2021.1936863
Articles are hosted by Taylor and Francis Online.
A global model is proposed to simulate the drying process of used nuclear fuel assemblies under vacuum drying conditions. The transient model consists of a coupled mass and energy conservation equation with appropriate source and sink terms. The classic Hertz-Knudsen expression is employed to resolve the evaporation rate and the associated water mass depletion in the system. Both latent heat of vaporization and residual decay heat are considered as sink and source in the energy conservation, respectively. The model is employed to simulate vacuum drying of spent nuclear fuel rod storage systems. Multistage stepwise vacuuming of the system is emulated, and several parametric studies are conducted to identify their role in the drying process. The predicted temporal profiles show that the proposed model is able to capture qualitative trends of the water removal rate, hence the dryness level of the system. The model prediction is also compared against experiments where the amount of residual water after a standard vacuum drying procedure is quantified. The predictions are found to compare favorably with the experimental measurements.