ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Taylan Tuğrul
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 357-363
Technical Paper | doi.org/10.1080/00295450.2021.1895407
Articles are hosted by Taylor and Francis Online.
In these days, Monte Carlo (MC) simulation is a method that can calculate the radiation dose that occurs in an environment in the most accurate way. The correct measurement of the dose occurring on the patient’s surface is of great importance to estimate the reactions that may occur on the patient’s skin. This importance encouraged us to do this study. The aim of this study is to determine buildup region and surface doses using MC simulation and to compare them with results of the parallel plane ion chamber and Treatment Planning System (TPS) measurements for 6-MV photon beams. Surface doses normalized to the maximum dose for the parallel plane ion chamber, MC simulation, fast photon (FP) algorithm, and collapsed cone convolution superposition (CC) algorithm are 13.6%, 30.28%, 0%, and 27.33%, respectively. The CC algorithm and parallel plane ion chamber measurements are compatible with MC simulation but the FP algorithm has calculated the dose less to a depth of 0.8 cm. Measuring the surface dose and the doses in the buildup region is of great importance in terms of accurately predicting the complications that may occur in the patient’s skin and taking precautions early. Using some methods and correction factors, the surface dose and the doses that may occur in the buildup region can be accurately calculated. It is recommended not to use the FP algorithm for stereotactic body radiation therapy and intensity-modulated radiation therapy treatments, as it cannot calculate doses correctly in the buildup region and surface.