ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Joshua A. Hubbard, Timothy J. Boyle, Ethan T. Zepper, Alexander Brown, Taylor Settecerri, Joshua L. Santarpia, Nelson Bell, Joseph A. Zigmond, Steven S. Storch, Brenda J. Maes, Nicole D. Zayas, Dora K. Wiemann, Marissa Ringgold, Fernando Guerrero, Xavier J. Robinson, Gabriel A. Lucero, Laura J. Lemieux
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 137-153
Technical Paper | doi.org/10.1080/00295450.2021.1880255
Articles are hosted by Taylor and Francis Online.
Solid waste samples consisting of shredded cellulose, coated with either mesoparticles of metallic salts or dried metal nitrate (lutetium, ytterbium, or depleted uranium) solutions, were generated to mimic solid nuclear waste. After burning these samples, the masses of the aerosolized metal cations were quantified by leaching them from air filters and analyzing the leachate with inductively coupled plasma mass spectrometry. The airborne release fractions (ARFs) for Lu and depleted uranium nitrates were 1 × 10−4, and 3 × 10−3 for Lu and depleted uranium mesoparticle salts, respectively. Uncertainties in ARFs were approximately 10% for the metal nitrates and 30% for the metallic mesoparticles. These data are most applicable to waste materials with 1% metal mass loading where the initial respirable fraction of contaminant particles is one. ARFs were consistent across the two metals, but there was an order of magnitude difference with respect to the physical and chemical form (mesoparticle salt versus nitrate). Cellulose combustion literature indicates that combustion pathways were likely affected by off-gassing and endothermic decomposition reactions. In comparison to ARF values from DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,” this dataset was consistent with previous results but provides a well-characterized and reproducible method for doping cellulosic materials with nuclear waste surrogates to serve as a baseline for future experimental and computational works.