ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Robert A. Joseph, III, Riley M. Cumberland, Robert L. Howard
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 129-136
Technical Paper | doi.org/10.1080/00295450.2021.1874818
Articles are hosted by Taylor and Francis Online.
This analytical study focuses on loading standardized transportation, aging, and disposal canisters (STADs) at commercial reactor sites and subsequent transportation, e.g., to a consolidated interim storage facility (CISF). Specifically, the amount of spent nuclear fuel (SNF) available to load into STADs with varying deployment dates is explored, and the scenarios are compared with a scenario in which STADs are never loaded at reactor sites. Two key findings are that about half of the U.S. inventory of commercial SNF could be captured in STADs if they were fully deployed by 2035 and that the percentage of SNF available to load into STADs decreases as STAD deployment is delayed.
In additional scenarios, the effects of shipping STADs directly from at-reactor spent fuel pools (SFPs) to a CISF are analyzed for a STAD full deployment year of 2035. A key finding from the analysis is that the dry storage of SNF in STADs at reactor sites can be minimized by direct shipment to a CISF from reactor site SFPs. However, minimizing dry storage at reactor sites means maximizing the receipt rate for STADs at a CISF, and there is likely a more optimal point between the two scenarios for an overall cost-effective operation of waste management systems.