ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
George M. Jacobsen, Hangbok Choi, James A. Turso, Amanda M. Johnsen, Andrew J. Bascom, Xialu Wei, Eugene A. Olevsky
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 27-36
Technical Paper | doi.org/10.1080/00295450.2021.1877504
Articles are hosted by Taylor and Francis Online.
Zirconium silicide (Zr3Si2) is a heavy reflector material particularly effective for application to a Gas-cooled Fast Reactor (GFR) such as the General Atomics Energy Multiplier Module (EM2) and Fast Modular Reactor (FMR). In this work, the manufacturability of a high-density Zr3Si2 compound, in the Zr3Si2 phase, was investigated using hot-pressing and spark-plasma-sintering methods. The microstructure, composition, and thermal properties of the resulting hot-pressed material were measured, resulting in a 96% relative density and a 96% phase pure material. The thermal properties were consistent with those necessary for use under GFR operating conditions. The structural and dimensional stability of the material was also measured before and after neutron irradiation up to 1017 n/cm2 in the research reactor, resulting in an average linear dimensional change of <0.12%. The preliminary irradiation tests also confirmed the micromechanical stability of the Zr3Si2 phase, with no evidence of microcracking after irradiation. The results of the irradiation tests verify the fabrication method of Zr3Si2 for nuclear applications, but further irradiation tests under high-temperature and high-irradiation conditions will be required to qualify the material for GFR applications.