ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. P. Lestone, M. D. Rosen, P. Adsley
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S352-S355
Technical Note | doi.org/10.1080/00295450.2021.1909372
Articles are hosted by Taylor and Francis Online.
During the Manhattan Project, a simple formula was developed by Bethe and Feynman in 1943 to estimate the yield of a fission-only nuclear explosion of a uniformly dense bare sphere of supercritical fissile material. We have not found any evidence that Bethe and Feynman knew of the first yield formula obtained by Frisch and Peierls contained within their famous March 1940 memorandum. Similarly, we have not found any technical documents that compare the Bethe-Feynman formula to the earlier works of Frisch and Peierls or Serber. After adjusting for differences in the labeling of critical radii, we find that earlier formulas only differ by a scaling factor.