ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Scott D. Crockett, Franz J. Freibert
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S286-S294
Technical Note | doi.org/10.1080/00295450.2021.1913036
Articles are hosted by Taylor and Francis Online.
The hydrodynamic response of materials under extreme conditions of pressure, temperature, and strain is dependent on the equation of state of the matter in all its states of existence. The Trinity plutonium implosion device development required the Los Alamos physics and engineering research community to advance the understanding of equations of state further and faster than ever before. The unpredicted high yield from the Trinity fission device explosion and the push to design the “Super” thermonuclear device initiated 75 years of unprecedented research and technological progress in equation of state development. This paper describes the progress made on equation of state development during and since the Manhattan Project at Los Alamos.