ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Jung Hwan Kim, Chul Min Kim, Yong Hee Lee, Man-Sung Yim
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1753-1767
Regular Technical Paper | doi.org/10.1080/00295450.2020.1837583
Articles are hosted by Taylor and Francis Online.
The safe operation of a nuclear power plant (NPP) can be guaranteed through the team effort of operators in the main control room (MCR). Among the various features, peer checks, concurrent verification, independent verification, and communication reconfirmation are major contributors to effective operations in the MCR. In the digital MCR environment of advanced NPPs, there are potential emerging issues of concern related to these contributors resulting from the use of PC-soft controls for reactor operations. The objective of this study is to investigate the development of quantitative indicators for estimating the implicit intentions of reactor operators as a way to mitigate such concerns. The proposed quantitative indicators support peer checks and concurrent/independent verifications for diagnosing and preventing human errors through communication enhancement in a digital technology-based MCR. A machine learning–based algorithm was used to classify two implicit intentions of agreement and disagreement. The classification was based on electroencephalography data measured from human subjects while they performed mock operational tasks using soft controls. The mock operational tasks were based on using a Windows-based nuclear plant performance analyzer (Win-NPA). Statistical analysis was performed on the measured data to identify significant differences between the agreement and disagreement judgments by the operators. An average classification accuracy of 72% was achieved by using a support vector machine classifier for the Win-NPA task with a low number of features across the various Brodmann areas. The methodology proposed in this study may also serve to enhance communications in conventional MCRs for human error minimization.