ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Benjamin Rouben, Eleodor Nichita
Nuclear Technology | Volume 207 | Number 10 | October 2021 | Pages 1633-1638
Technical Note | doi.org/10.1080/00295450.2020.1827884
Articles are hosted by Taylor and Francis Online.
Throughout the years, various reports and training manuals on CANada Deuterium Uranium (CANDU) reactors have mentioned that the CANDU lattice is overmoderated. Overmoderation is not always defined in such documents but often appears associated with the positive void reactivity of the CANDU lattice. Some documents refer, logically, to overmoderation as meaning that the lattice pitch is larger than the pitch that maximizes the infinite-lattice multiplication constant but do not demonstrate this is the case for CANDU. We demonstrate that in fact, the CANDU lattice is undermoderated; that is, the current 28.575-cm lattice pitch is smaller than the pitch for which the infinite-lattice multiplication constant reaches its maximum. We hypothesize that the misconception of CANDU overmoderation may have originated from attributing the CANDU positive void reactivity to too much moderator by incorrectly equating the effect of losing heavy water coolant with the effect of losing heavy water moderator.