ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Swetha Veeraraghavan, Chandrakanth Bolisetti, Andrew Slaughter, Justin Coleman, Somayajulu Dhulipala, William Hoffman, Kyungtae Kim, Efe Kurt, Robert Spears, Lynn Munday
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1073-1095
Technical Paper | doi.org/10.1080/00295450.2020.1807282
Articles are hosted by Taylor and Francis Online.
Seismic analysis and risk assessment of safety-critical infrastructure like hospitals, nuclear power plants, dams, and facilities handling radioactive materials involve computationally intensive numerical models and coupled multiphysics scenarios. They are also performed in a strict regulatory environment that requires high software quality assurance standards, and in the case of safety-related nuclear facilities, a conformance to the American Society of Mechanical Engineers Nuclear Quality Assurance (NQA-1) standard. This paper introduces the open-source finite-element software, MASTODON (Multi-hazard Analysis of Stochastic Time-Domain Phenomena), which implements state-of-the-art seismic analysis and risk assessment tools in a quality-controlled environment. MASTODON is built on MOOSE (Multi-physics Object-Oriented Simulation Environment), which is a highly parallelizable, NQA-1 conforming, coupled multiphysics, finite-element framework developed at Idaho National Laboratory. MASTODON is capable of fault rupture and source-to-site wave propagation using the domain reduction method, nonlinear site response, and soil-structure interaction analysis, implicit and explicit time integration, automated stochastic simulations, and seismic probabilistic risk assessment. When coupled with other MOOSE applications, MASTODON can also solve strongly and weakly coupled multiphysics problems. This paper presents a summary of the capabilities of MASTODON and some demonstrative examples.