ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Marina Sessim, Michael R. Tonks
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1004-1014
Technical Paper | doi.org/10.1080/00295450.2021.1910005
Articles are hosted by Taylor and Francis Online.
Nuclear thermal propulsion (NTP) provides a consistent source of thrust for long space missions. However, fuel development for NTP reactors is a major technological hurdle. Existing modeling and simulation tools developed by the U.S. Nuclear Engineering Advanced Modeling and Simulation (NEAMS) program for power reactors can be leveraged to help accelerate the fuel development. This work is a preliminary demonstration of the application of NEAMS tools to model NTP fuel. Specifically, the fuel performance tool BISON and the mesoscale reactor materials tool MARMOT are used to develop a multiscale model of thermal transport in a W-UO2 CERMET fuel element for NTP reactors. Three-dimensional simulations in MARMOT are used to estimate the effective thermal conductivity (ETC) of fresh CERMET fuel at temperatures ranging from 1500 K to 3000 K. The ETC values from MARMOT are then used in BISON simulations that predict the steady-state temperature profile throughout a 61-subchannel hexagonal fuel element. The temperature varies by 83 K throughout the fuel element, with the highest temperature occurring near the outer edges of the element. BISON is also used to show that the temperature profile in prototype fuel elements with fewer subchannels does not vary significantly from that in the 61-subchannel element.