ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
IAEA, PNNL test new uranium enrichment monitor
A uranium enrichment monitor developed by a team at Pacific Northwest National Laboratory will soon be undergoing testing for nonproliferation applications at the International Atomic Energy Agency Centre of Excellence for Safeguards and Non-Proliferation in the United Kingdom. A recent PNNL news article describes how the research team, led by nuclear physicist James Ely, who works within the lab’s National Security Directorate, developed the UF6 gas enrichment sensor (UGES) prototype for treaty verification and other purposes.
Edward Lum, Chad L. Pope
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 761-770
Technical Paper | doi.org/10.1080/00295450.2020.1794190
Articles are hosted by Taylor and Francis Online.
This paper discusses a new method of simulating the fuel assembly duct-bowing reactivity coefficient for EBR-II run 138B. Quantification of the fuel assembly duct-bowing reactivity effect in liquid metal–cooled fast reactors has been a persistent problem since they were first designed and operated. Simulation of the duct-bowing reactivity effect is difficult because the level of detail required to simulate the effect has exceeded most modeling capabilities. The new method outlined in this paper utilizes the finite element analysis code ANSYS to analyze the thermal and structural components. The displacement of the fuel assembly duct due to thermal expansion and mechanical interaction was calculated by ANSYS using recorded EBR-II run 138B temperature and power boundary value data. The displacement values were incorporated into to a Monte Carlo model of EBR-II run 138B and keff was calculated. Multiple Monte Carlo calculations were performed with duct displacement values corresponding to different reactor temperatures. Using the calculated keff values associated with the different duct displacement results allowed calculation of the duct-bowing reactivity coefficient. The duct-bowing reactivity coefficient was calculated to be −14.5 × 10−4 $/°C/ ± 4.4%.