ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Edward Lum, Chad L. Pope
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 761-770
Technical Paper | doi.org/10.1080/00295450.2020.1794190
Articles are hosted by Taylor and Francis Online.
This paper discusses a new method of simulating the fuel assembly duct-bowing reactivity coefficient for EBR-II run 138B. Quantification of the fuel assembly duct-bowing reactivity effect in liquid metal–cooled fast reactors has been a persistent problem since they were first designed and operated. Simulation of the duct-bowing reactivity effect is difficult because the level of detail required to simulate the effect has exceeded most modeling capabilities. The new method outlined in this paper utilizes the finite element analysis code ANSYS to analyze the thermal and structural components. The displacement of the fuel assembly duct due to thermal expansion and mechanical interaction was calculated by ANSYS using recorded EBR-II run 138B temperature and power boundary value data. The displacement values were incorporated into to a Monte Carlo model of EBR-II run 138B and keff was calculated. Multiple Monte Carlo calculations were performed with duct displacement values corresponding to different reactor temperatures. Using the calculated keff values associated with the different duct displacement results allowed calculation of the duct-bowing reactivity coefficient. The duct-bowing reactivity coefficient was calculated to be −14.5 × 10−4 $/°C/ ± 4.4%.