ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Edward Lum, Chad L. Pope
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 761-770
Technical Paper | doi.org/10.1080/00295450.2020.1794190
Articles are hosted by Taylor and Francis Online.
This paper discusses a new method of simulating the fuel assembly duct-bowing reactivity coefficient for EBR-II run 138B. Quantification of the fuel assembly duct-bowing reactivity effect in liquid metal–cooled fast reactors has been a persistent problem since they were first designed and operated. Simulation of the duct-bowing reactivity effect is difficult because the level of detail required to simulate the effect has exceeded most modeling capabilities. The new method outlined in this paper utilizes the finite element analysis code ANSYS to analyze the thermal and structural components. The displacement of the fuel assembly duct due to thermal expansion and mechanical interaction was calculated by ANSYS using recorded EBR-II run 138B temperature and power boundary value data. The displacement values were incorporated into to a Monte Carlo model of EBR-II run 138B and keff was calculated. Multiple Monte Carlo calculations were performed with duct displacement values corresponding to different reactor temperatures. Using the calculated keff values associated with the different duct displacement results allowed calculation of the duct-bowing reactivity coefficient. The duct-bowing reactivity coefficient was calculated to be −14.5 × 10−4 $/°C/ ± 4.4%.