ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Peter Yarsky
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 665-679
Technical Paper | doi.org/10.1080/00295450.2020.1810465
Articles are hosted by Taylor and Francis Online.
In a companion paper, the U.S. Nuclear Regulatory Commission (NRC) staff has described analyses performed using the TRAC/RELAP Advanced Computational Engine (TRACE) code to study the transient system response of the NuScale power module to a postulated beyond-design-basis loss of alternating-current (LOAC) power transient where the module protection system completely fails to insert the control rods. The subject paper studies the sensitivity of the event progression and consequences to variation in the initial reactor coolant system (RCS) temperature. These studies were performed by varying the effective steam generator heat transfer surface area between 100% and 50% of the nominal area. The results of the NRC staff analyses show that at increased initial temperatures, it is possible for the NuScale primary side to remain critical for an extended period of time, leading to a sustained loss of primary-side inventory through pressure relief until the natural circulation flow pattern in the RCS becomes broken. After the flow loop is broken, reactor power decreases significantly, and the primary figures of merit important to safety are met with substantial margin.