ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Robert B. Hayes
Nuclear Technology | Volume 207 | Number 3 | March 2021 | Pages 460-467
Technical Note | doi.org/10.1080/00295450.2020.1762472
Articles are hosted by Taylor and Francis Online.
The standard approach in nuclear criticality safety analysis is to rely quite heavily—and in some cases exclusively—on passive controls, such as assuming all worst-case conditions are by default attained. This means assumptions are made such as no poison, optimum moderation, and pure fissile actinide content at the maximum mass with optimum full reflection. What is clearly attainable is something less than any of these extremal conditions, but how can one rely on a limit based on assuming less than the worst case without some controls ensuring those assumptions are not challenged? This technical note discusses various options for approaching a defendable realistic technical basis for safety analysis by associating probabilities with conservative assumptions.