ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Song Wengang, Zhang Lijun, Wang Guanying, Li Qiang
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 292-298
Technical Paper | doi.org/10.1080/00295450.2020.1747838
Articles are hosted by Taylor and Francis Online.
The Sallen-Key filter is frequently used to realize radiation detector pulse shaping. To improve the performance of the digital pulse-shaping algorithm, we establish the full parameter Kirchhoff’s Current Law equations of the analog Sallen-Key circuit. Synthesizing these equations, a second-order nonhomogeneous difference equation is obtained. By analyzing the symmetry degree of the response function of the difference equation, an optimal pulse-shaping algorithm is derived. Given any shaping time, the parameters needed by this algorithm can be calculated easily. As well, this algorithm has no limitation on gain parameter and no undershoot. Simulation and field-programmable gate array test results validate the feasibility of the new algorithm.