ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Rosendo Borjas Nevarez, Bruce McNamara, Frederic Poineau
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 263-269
Technical Paper | doi.org/10.1080/00295450.2020.1757961
Articles are hosted by Taylor and Francis Online.
For several decades, extensive research has been performed on the recovery and purification of zirconium from spent nuclear fuel cladding using a variety of chlorination reaction processes. After the reaction between fuel cladding and chlorine gas, zirconium tetrachloride is separated from other chloride species based on their boiling/sublimation points; however, the presence of iron and niobium chloride impurities limits the efficiency of these processes. In this work, chlorination products of Zr, Fe, and Nb mixtures were analyzed by thermogravimetric analysis, and the results suggest that Fe impurities cannot be removed via chlorination alone. Purification of zirconium from Zircaloy-2, Zircaloy-4, and a Zr-Nb alloy was performed via hydrochlorination using a sealed tube reaction system. The purity of the final ZrCl4 products is higher than 99.99% after successful removal of Fe and Nb.