ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Yanzi Liu, Xuegang Zhang, Gang Zhang, Jianjun Jiang, Li Zhang, Hong Hu, Tao Qing, Yanhua Zou, Dan Yang, Liaozi Xi, Fan Tang, Ming Jia, Yiqian Wu, Zhiyao Liu
Nuclear Technology | Volume 207 | Number 1 | January 2021 | Pages 74-93
Technical Paper | doi.org/10.1080/00295450.2020.1733376
Articles are hosted by Taylor and Francis Online.
The digital control system (DCS)+state-oriented procedure (SOP) system adopted by China’s Ling’ao Phase II nuclear power plant’s main control room requires changes to the cognitive process, behavior mode, and error mode while triggering new human factors. Therefore, in this paper we present a cognitive reliability model for the DCS+SOP system in the Ling’ao Phase II Nuclear Power Plant’s main control room and conduct a human reliability analysis. The model is based on the cognitive process with respect to considering the coordinator’s accident recovery effect and obtaining the method of calculating cognitive reliability. We determine impact factors for the three cognitive stages of the operator’s and the coordinator’s diagnosis, decision making, and operation. We obtain the operator’s and the coordinator’s weights for each process through an analytic hierarchy process. Using methods of simulation and analyzing the experiment data, we obtain revised coefficients for the cognitive reliability model. Additionally, the trend of the simulation curve indicates the rationality of the model. Finally, we provide an example based on the proposed cognitive reliability model. The process of analyzing the example demonstrates that this method provides a feasible analysis method for the cognitive reliability of the DCS+SOP system in the main control room.