ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Seong Woo Kang, Jae-Hwan Yang, Man-Sung Yim
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1593-1606
Technical Paper | doi.org/10.1080/00295450.2020.1713680
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to examine the feasibility of using bismuth-embedded SBA-15 (Bi-SBA-15) as gaseous iodine filtration material for applications at higher temperatures, such as environmental release severe accident mitigation, while reducing the cost of production and maintaining its iodine adsorption capacity. It was shown that Bi-SBA-15 can be produced in a much more economically feasible way by (1) increasing the amount of the chemical reagents for SBA-15 synthesis, (2) decreasing the amount of other chemicals required to facilitate the chemical reactions, and (3) reducing the synthesis time, all while maintaining the iodine adsorption capability. Through both closed and open iodine adsorption experiments, it was shown that Bi-SBA-15 has a much higher adsorption capacity than silver-exchanged zeolites at 423°K (150°C) but decreases sharply as the temperature increases, resulting in about half of the iodine adsorption capacity of AgX at 523 K (250°C). Assuming that the commercialized cost of Bi-SBA-15 could be less than half of silver-exchanged zeolites, Bi-SBA-15 may be able to replace silver-exchanged zeolites at higher-temperature applications but only if the temperature of the gaseous iodine is less than 423 K (150°C) or if there is a presystem such as a pool scrubber to reduce the temperature of the gaseous iodine reaching the iodine filtration system. If Bi-SBA-15 can be produced much less expensively at a small fraction of cost compared with silver-exchanged zeolites, it may even be used at a temperature up to 523 K (250°C) with high enough iodine capture efficiency by simply increasing the mass of Bi-SBA-15 to more than double the mass of the required silver-exchanged zeolites.