ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Yuan Zhou, Bing Chen, Hongyu He, Bo Li, Xinlin Wang
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 32-39
Technical Paper | doi.org/10.1080/00295450.2019.1613850
Articles are hosted by Taylor and Francis Online.
With large-scale molecular dynamics, we investigate displacement cascades in monocrystalline silicon with regard to the effects of temperature, strain, and primary knock-on atom energy on defect generation and evolution. With temperature increasing, both the thermal spike region and the peak defect count increase, while the effect of temperature on the surviving defect number is negligible. Nevertheless, higher temperature shows negative effect on clustering of vacancy. The effects of uniaxial strain on defect production and clustering is negligible, while its hydrostatic counterpart is evident. With the increment of hydrostatic strain, both the peak and surviving defect count increase (decrease) under tensile (compressive) hydrostatic loading. Meantime, tensile hydrostatic strain will promote defect clustering. More defects and larger defect clusters are produced at higher energy. Otherwise, interstitials are hard to form clusters under different conditions.