ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Naphtali M. Mokgalapa, Tushar K. Ghosh, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 336-347
Technical Note | doi.org/10.1080/00295450.2018.1453729
Articles are hosted by Taylor and Francis Online.
Graphite dust is generated in the reactor core during normal operation of very high temperature reactors (VHTRs). This dust is transported throughout the reactor circuit and plates-out at different locations. The resuspension of graphite dust is believed to be a major contributor to the nuclear source term. The adhesion force is an important parameter governing the resuspension of the dust. The present study employed an atomic force microscope to measure the adhesive force between a reactor-grade graphite cluster “particle” and VHTR structural materials including Inconel 617 and Hastelloy X in an air glove box. Results for a reactor-grade graphite (MLRF-1 from SGL Carbon Ltd.) cluster particle interacting with Inconel 617 and Hastelloy X samples are reported under four different surface conditions including as received, and after 5, 10, and 15 min of oxidation. These forces were also predicted using the Johnson-Kendall-Roberts theoretical model with the estimate of the work of adhesion. The measured values depend on oxidation times but are in general a factor of about 20 lower than the predicted values. With surface roughness taken into account, the predicted values differ from the measured values by factors of 2 and 4 at the maximum for Hastelloy X and Inconel 617, respectively.