ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
N. Dianne Bull Ezell, Chuck Britton, Nance Ericson, David Holcomb, M. J. Roberts, Seddik Djouadi, Richard Wood
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 173-179
Technical Paper | doi.org/10.1080/00295450.2018.1452498
Articles are hosted by Taylor and Francis Online.
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this paper. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying either technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. The conclusions made from the results at each of these locations is discussed, as well as possible future work.