ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Bing Hong, Chao Liu, Taosheng Li, Yongfeng Wang, Yanan Li, Mohamed Mazunga
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 174-179
Technical Paper | doi.org/10.1080/00295450.2017.1406270
Articles are hosted by Taylor and Francis Online.
Long counters are widely used for monitoring neutron fluence owing to their constant response in a wide energy range. In this study, an extended long counter named FDS-LC (FDS Long Counter), having a flat response over a wide neutron energy range from 1 keV to 20 MeV, was developed to monitor high neutron fluence. The geometry and basic structure of FDS-LC was optimized by using Monte Carlo simulations, and it consists of the BF3 thermal neutron counter, the inner and outer polyethylene moderators, borated polyethylene absorption layer, and chromium and lead metal neutron multiplier. The parameters such as the effective center, the energy response, and the angluar response of the FDS-LC were estimated using Super Monte Carlo code. The experimental validation of these parameters were performed by using 241Am-Be source and T(d, n)3He neutron source at the China Institute of Atomic Energy in Beijing. The results showed that the fluctuation of the response in the energy range from 1 keV to 20 MeV was less than 12% and the effective center positions were approximately equal to The comparison of the simulation and experimental results of the angular response function showed good agreement with a maximum deviation less than 15.7%.