ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Lars-Erik De Geer, Christer Persson, Henning Rodhe
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 11-22
Technical Paper | doi.org/10.1080/00295450.2017.1384269
Articles are hosted by Taylor and Francis Online.
The nature of two explosions that were witnessed within 3 s at the Chernobyl-4 reactor less than a minute after 21:23:00 UTC on April 25, 1986, have since then been the subject of sprawling interpretations. This paper renders the following hypothesis. The first explosion consisted of thermal neutron mediated nuclear explosions in one or rather a few fuel channels, which caused a jet of debris that reached an altitude of some 2500 to 3000 m. The second explosion would then have been the steam explosion most experts believe was the first one. The solid support for this new scenario rests on two pillars and three pieces of corroborating evidence. The first pillar is that a group at the V. G. Khlopin Radium Institute in then Leningrad on April 29, 1986, detected newly produced, or fresh, xenon fission products at Cherepovets, 370 km north of Moscow and far away from the major track of Chernobyl debris ejected by the steam explosion and subsequent fires. The second pillar is built on state-of-the-art meteorological dispersion calculations, which show that the fresh xenon signature observed at Cherepovets was only possible if the injection altitude of the fresh debris was considerably higher than that of the bulk reactor core releases that turned toward Scandinavia and central Europe. These two strong pieces of evidence are corroborated by what were manifest physical effects of a downward jet in the southeastern part of the reactor, by seismic measurements some 100 km west of the reactor, and by observations of a blue flash above the reactor a few seconds after the first explosion.