ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
G. Danko, J. Birkholzer, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 110-128
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3975
Articles are hosted by Taylor and Francis Online.
A thermal-hydrologic natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rock mass in the proposed Yucca Mountain repository. The multiphysics problem is solved with MULTIFLUX, in which a lumped-parameter computational fluid dynamics (CFD) model is iterated with TOUGH2. The iterative process ensures that consistent boundary conditions are used on the drift wall in both the CFD and the TOUGH2 model-elements. The CFD solution includes natural convection, conduction, and radiation for heat, as well as moisture convection and diffusion for moisture transport with half waste package-scale details in the drift. The TOUGH2 solution for the rock mass is generalized with the use of the Numerical Transport Code Functionalization technique in order to include both mountain-scale heat and moisture transport in the porous and fractured rock, and fine half waste package-scale details at the drift wall. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2-based integrated model are presented.