ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Vivek Agarwal, James A. Smith
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 329-333
NT Letter | doi.org/10.1080/00295450.2016.1273704
Articles are hosted by Taylor and Francis Online.
The core of any nuclear reactor presents a particularly harsh environment for sensors and instrumentation. The reactor core also imposes challenging constraints on signal transmission from inside the reactor core to outside of the reactor vessel. In this letter, an acoustic measurement infrastructure installed at the Advanced Test Reactor (ATR), located at Idaho National Laboratory, is presented. The measurement infrastructure consists of ATR in-pile structural components, coolant, acoustic receivers, primary coolant pumps (PCPs), a data acquisition system, and signal-processing algorithms. Intrinsic and cyclic acoustic signals generated by the operation of the PCPs are collected and processed. The characteristics of the intrinsic signal can indicate the process state of the ATR (such as reactor startup, reactor criticality, reactor attaining maximum power, and reactor shutdown) during operation (i.e., real-time measurement).