ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paolo F. Venneri, Michael Eades, Yonghee Kim
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 64-74
Technical Paper | doi.org/10.13182/NT16-80
Articles are hosted by Taylor and Francis Online.
This paper explores the possibility of passively controlling the reactivity of a nuclear thermal propulsion (NTP) reactor. The objective of this study is to limit the use of the radial control drums to start-up and shutdown procedures and ensure that the exact same operation is performed for each full-power burn. To achieve the goal, this work considers several design measures, which include a low-density burnable absorber in the tie-tube components of the core, the use of variable hydrogen density in the moderator element coolant passages, and the judicious selection of a modified mission profile to maximize the decay of 135Xe after operation. In addition, the improved stability from the enhanced fuel temperature feedback due to the implementation of low-enriched-uranium fuel is also exploited for the realization of passive reactivity control. In this work, a passive reactivity control system is implemented in the Superb Use of Low Enriched Uranium (SULEU) NTP core and analyzed in terms of its ability to fulfill a NASA Mars Mission Design Reference Architecture 5.0–style mission. It is concluded that the use of the control drums can be limited to start-up and shutdown operations only, eliminating operator input in order to maintain a constant power level in the core.