ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
E. Alves, L. C. Alves, N. Franco, M. R. Da Silva, A. Paúl
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 233-237
Technical Paper | Beryllium Technology | doi.org/10.13182/NT07-A3870
Articles are hosted by Taylor and Francis Online.
The improved mechanical and chemical properties of intermetallic beryllium compounds make them good candidates to replace metallic beryllium in future fusion power plants. Titanium beryllide is a compound with low chemical reactivity, which makes it very attractive for fusion applications. In this work we study the structural stability of titanium beryllides and the oxidation behavior under air annealing. Both high-resolution X-ray diffraction and microbeam techniques were used to follow the evolution of the composition and crystalline phases as well as the microstructure. Beryllium-titanium intermetallic compounds were produced using two alloys with a nominal composition of Be-5 at.% Ti and Be-7 at.% Ti. The as-cast samples show the presence of Be10Ti for the Be-7 at.% Ti alloy, while the Be12Ti phase was mostly found in the Be-5 at.% Ti compound. While the Be-5 at.% Ti alloy reveals large intragrain regions with high concentration of impurities (O, Fe) and Ti depletion, the Be-7 at.% Ti shows a more homogeneous structure. During thermal treatments up to 800°C in dry-air atmosphere, the oxidation occurs preferentially at the beryllium-rich regions. No evidence was found for phase separation during the annealing in vacuum.