ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Tomio Okawa, Akio Kotani, Naoya Shimada, Isao Kataoka
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 304-313
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3844
Articles are hosted by Taylor and Francis Online.
The critical heat flux in an annular two-phase flow regime is influenced significantly by an obstacle placed in a flow channel. Since the transition to critical heat flux condition in this flow regime is caused by the depletion of liquid film, it is probable that the flow obstacle has a notable influence on the rate of droplet deposition and, consequently, the film flow rate in the annular regime. Also, the obstacle's effect on the deposition rate would be important in predicting the critical heat flux in a boiling water reactor core because the grid spacer can be regarded as a flow obstacle placed in the subchannel. The obstacle effect was studied experimentally for vertical upward air-water annular flow; placing 12 small tubes of different cross sections concentrically in the test section tube one by one, the influence of obstacle geometry on the deposition rate was investigated. The rate of droplet deposition markedly increased if the present tubular obstacle was placed; the rate of increase was between ~30 and 200% and depended primarily on the obstacle shape. Using the experimental data, an empirical correlation to account for the obstacle's effect was proposed.