ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Bela Toth, Klaus Mueller, Jon Birchley, Hozumi Wada, Claude Jamond, Klaus Trambauer
Nuclear Technology | Volume 157 | Number 2 | February 2007 | Pages 132-142
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3808
Articles are hosted by Taylor and Francis Online.
This paper presents the results of pretest calculations of the Phebus fission product release experiment FPT3. The test scenario with the appropriate initial and boundary conditions was provided by the Institut de Radioprotection et de Sûreté Nucléaire. For the analyses, three severe accident codes were used: ATHLET-CD, ICARE2, and MELCOR. The calculations were focused on the main phenomena occurring in the bundle, such as the thermal behavior, the hydrogen production mainly due to cladding oxidation, the massive degradation of spent fuel and the release of fission products and control rod and structure materials. Using the predefined boundary and initial conditions, relatively small deviations between the code results were obtained, which demonstrates that the dominant processes occurring during a severe accident in the core of pressurized water reactors can be adequately simulated. By applying these codes to a large spectrum of integral tests as well as to plant analyses, one will obtain reliable results on the fuel bundle behavior. However, the spread in the calculated oxidized boron carbide masses indicates that modeling efforts are still necessary in all the codes in this respect.