ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Hitesh Rajput, Tanmoy Som, Soumitra Kar
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 125-132
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-154
Articles are hosted by Taylor and Francis Online.
Fuel used in nuclear reactors contains fissile material. The fission process releases a huge amount of energy, and hence, the fissioning components must be held in a robust form capable of enduring high operating temperatures and an intense radiation environment. The shape and integrity of the fuel structures must be maintained over a period of several years within the reactor core to prevent the leakage of fission products into the reactor coolant. Further, the fuel rods must be in a nondistorted state for proper alignment in the fuel assembly to ensure proper fuel bundle power distribution. Improper core power distribution can breach the safety and operational limits on fuel and channel powers. The strategy discussed includes the methodology to verify the fuel assembly using image processing techniques. The methodology uses the Radon transform and contains four phases: image reading, preprocessing, Radon transform, and verification. The approach has been validated on 1026 fuel assemblies of a nuclear power plant, for which experimental results are shown.