ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Jacopo Buongiorno, James W. Sterbentz, Philip E. MacDonald
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 282-303
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3708
Articles are hosted by Taylor and Francis Online.
The supercritical water-cooled nuclear reactor (SCWR) concept offers potential for superior economics due to its high thermal efficiency and plant simplification. However, design of a thermal-spectrum core for such a reactor is complicated by the relatively low density of the water coolant and therefore reduced moderation. This requires the SCWR design to include a dedicated moderator. One solution explored worldwide is based on the use of water rods. In this paper we assess the feasibility of a different approach based on solid moderators, which has some potential advantages including increased core thermal capacity, reduced coolant worth, and simplified vessel internals. The neutronic performance of several solid moderators was evaluated and compared to that of water rods. It was found that the only acceptable solid moderator is zirconium hydride. Axial and local peaking can be readily suppressed by modest variations of the enrichment in a manner similar to the boiling water reactor practice. The Doppler and coolant reactivity coefficients are both negative and in the range of light water reactor experience. The use of zirconium hydride as a stable structural core component was evaluated and found to be acceptable under steady-state and accident conditions. In addition to its chemical and mechanical stability, zirconium hydride can also be fabricated with existing technology. However, its impact on the SCWR cost of electricity generation is deemed significant.