ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Y. Tobita, Sa. Kondo, H. Yamano, K. Morita, W. Maschek, P. Coste, T. Cadiou
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 245-255
Technical Paper | Sodium Technology - Thermal Hydraulics | doi.org/10.13182/NT06-2
Articles are hosted by Taylor and Francis Online.
SIMMER-III is a general two-dimensional, three-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a space-time and energy-dependent neutron transport kinetics model. The philosophy behind the SIMMER-III development was to generate a versatile and flexible tool, applicable for the safety analysis of various reactor types with different neutron spectra and coolants including the new accelerator-driven systems for waste transmutation. Currently, a three-dimensional version is also available, coined SIMMER-IV. The main backbone for analyses, however, is still SIMMER-III.SIMMER-III has proven especially well suited for fast spectrum systems such as the liquid-metal-cooled fast reactor where it is one of the key codes for safety analysis, including its application within licensing procedures. To serve especially the last purpose, the code must be made sufficiently robust and reliable and be tested and validated extensively. A comprehensive and systematic assessment program of the code has been conducted. This paper gives the major achievements of this assessment program.The SIMMER-III code handles by default liquid-metal-cooled fast reactor core materials - fuel, steel, coolant, control rod, and fission gas, in solid, liquid, and vapor states. The total of 27 density and 16 energy components are modeled in three velocity fields and one structure field in order that important fluid motions in a degraded core are simulated adequately. The spatial differencing method is based on Eulerian staggered mesh with a higher-order differencing scheme to mitigate numerical diffusion. An improved analytic equation-of-state model provides good accuracy especially at high temperature and pressure. Multiple flow-regime treatment is available over the entire void fraction range. An interfacial area convection model improves the flexibility of the code by tracing transport and history of interfaces and thereby better represents physical phenomena. A generalized and flexible code framework, along with improved numerical stability and accuracy, allows us to apply it to a variety of simple and complex multiphase flow problems.The code assessment program is an ongoing effort. Two major milestones have been achieved in the past by completing two assessment campaigns, Phase 1 and Phase 2: Phase 1 for fundamental code assessment of individual models and Phase 2 for integral code assessment for key phenomena relevant to liquid-metal-cooled fast reactor safety. Through this systematic code assessment program, comprehensive validation of the physical models has been conducted step-by-step. The assessment program has demonstrated that SIMMER-III is a state-of-the-art code with advanced models sufficiently flexible for simulating transient multiphase phenomena occurring during core disruptive accidents. This paper concentrates on the specifics of the code, mainly reflected in its application to sodium experiments related to the safety of liquid-metal-cooled fast reactors.