ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
John Avis, Paul Suckling, Nicola Calder, Robert Walsh, Paul Humphreys, Fraser King
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 175-187
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-83
Articles are hosted by Taylor and Francis Online.
Deep geologic disposal of radioactive waste is being planned in a number of international programs. Within a deep geologic repository (DGR), gases can be generated by corrosion of metals and degradation of organics. Reactions, and thus gas generation rates, are dependent upon pressures, temperature, and the availability of water or water vapor within the repository. Furthermore, many reactions consume water. Consumption rates and repository state are not known a priori and are in general coupled processes. A numeric model of coupled gas generation and transport has been developed and implemented in the T2GGM code. T2GGM consists of a gas generation model (GGM), which calculates rates of gas generation and water consumption within the DGR due to corrosion and microbial degradation of the waste packages, integrated with the widely used two-phase-flow code TOUGH2, which models the subsequent two-phase transport of the water and gas through the repository and into the DGR shafts and geosphere. T2GGM has been applied to assess gas transport from a proposed low- and intermediate-level radioactive waste DGR and to study the impact of container corrosion in a hypothetical used fuel DGR.