ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Braden Goddard, William Charlton, Paolo Peerani
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 403-414
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-18
Articles are hosted by Taylor and Francis Online.
As new reprocessing techniques and fuel forms are developed, the ability of inspection agencies and facility operators to measure powders containing several actinides becomes increasingly necessary. Neutrons emitted from induced and spontaneous fission of different nuclides are very similar, making it difficult to measure these powders with nondestructive assay techniques. To measure the powders, a neutron multiplicity technique based on first-principle methods was developed to exploit isotope-specific nuclear properties, such as energy-dependent fission cross sections and neutron-induced fission multiplicity. This technique was tested through measurements using an epithermal neutron multiplicity counter with two different interrogation (α,n) sources and varying plutonium materials. To complement these measurements, extensive Monte Carlo N-Particle eXtended (MCNPX) simulations were performed for each measured sample, as well as samples that were not available to measure. The primary application of this first-principle technique is the measurement of materials containing uranium, neptunium, plutonium, and americium. This technique still has several challenges that need to be overcome, the largest of these being the ability to produce results with acceptably small uncertainties.