ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Sang Ji Kim, Pham Nhu Viet Ha, Jae Yong Lim, Won Sik Yang
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 390-402
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-90
Articles are hosted by Taylor and Francis Online.
A core design study to convert a breakeven core into a transuranic (TRU) burner is performed for a 600-MW(electric)–rated metal-fueled sodium-cooled fast reactor. No change in the core and subassembly layouts is assumed, which only allows geometry variations within the fuel rods. Investigated alternatives are to use variable cladding thicknesses (VCTs), smearing fraction (SF) adjustments, and annular fuel rod concepts with a central liner of a variable diameter consisting of void, Zr, B4C, Al, etc. The VCT concept could not be employed due to a too-high clad inner wall temperature. A SF adjustment below a typical fraction of 75% leads to moderate TRU burning and a reduced sodium void worth but also to a relatively high burnup swing. Placing a central nonfuel rod with the fuel arranged in an annular ring affects the core performance and reactivity coefficients, depending on whether it is a moderator or an absorber. In general, candidate materials of high atomic numbers contribute to large positive sodium void worths but also enhanced negative expansion effects. Among the light elements, vanadium reveals a favorable performance with comparable TRU burning and a reduced sodium void worth, suggesting this material can be regarded as a substitute for sodium in the solid state.