ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Sang Ji Kim, Pham Nhu Viet Ha, Jae Yong Lim, Won Sik Yang
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 390-402
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-90
Articles are hosted by Taylor and Francis Online.
A core design study to convert a breakeven core into a transuranic (TRU) burner is performed for a 600-MW(electric)–rated metal-fueled sodium-cooled fast reactor. No change in the core and subassembly layouts is assumed, which only allows geometry variations within the fuel rods. Investigated alternatives are to use variable cladding thicknesses (VCTs), smearing fraction (SF) adjustments, and annular fuel rod concepts with a central liner of a variable diameter consisting of void, Zr, B4C, Al, etc. The VCT concept could not be employed due to a too-high clad inner wall temperature. A SF adjustment below a typical fraction of 75% leads to moderate TRU burning and a reduced sodium void worth but also to a relatively high burnup swing. Placing a central nonfuel rod with the fuel arranged in an annular ring affects the core performance and reactivity coefficients, depending on whether it is a moderator or an absorber. In general, candidate materials of high atomic numbers contribute to large positive sodium void worths but also enhanced negative expansion effects. Among the light elements, vanadium reveals a favorable performance with comparable TRU burning and a reduced sodium void worth, suggesting this material can be regarded as a substitute for sodium in the solid state.