ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jacob Dobisesky, Joshua Richard, Edward E. Pilat, Mujid S. Kazimi, David M. Carpenter
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 353-377
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-131
Articles are hosted by Taylor and Francis Online.
The primary motivation for using silicon carbide rather than zirconium alloy cladding is its putative improvement in accident resistance, due to slow reactions with water, even at high temperatures. But, fuel management performance will also be an important consideration in its commercial acceptance. Whether backfittable 18- and 24-month cycles can be designed for existing light water reactors, their enrichments, operating characteristics, and fuel costs are questions that the present study undertakes to answer. Also evaluated is the possibility of leveraging silicon carbide's ability to sustain higher fuel duty for increasing power levels and discharge burnups in pressurized water reactors. A preliminary design using fuel rods with the same dimensions as in typical Westinghouse fuel, but with fuel pellets having a 10 vol % central void, has been adopted to mitigate the higher fuel temperatures when silicon carbide is used. This allows design of 18- and 24-month cycles that meet present-day operating constraints on peaking factor, boron concentration, reactivity coefficients, and shutdown margin, while achieving batch average discharge burnups up to 80 MWd/kg U, as well as power uprates of 10% and possibly 20%. Control rod configuration modifications may be required to meet the shutdown margin criterion for the 20% uprate. For nonuprated cores, silicon carbide–clad fuel may have a fuel cost advantage, especially with increasing discharge burnup, provided the fuel manufacturing cost is close to that of Zircaloy tubes. The economics of the fuel cycle also improve with power uprates, as the value of the additional energy generated may substantially exceed the advantage from fuel cost alone.