ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Jacob Dobisesky, Joshua Richard, Edward E. Pilat, Mujid S. Kazimi, David M. Carpenter
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 353-377
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-131
Articles are hosted by Taylor and Francis Online.
The primary motivation for using silicon carbide rather than zirconium alloy cladding is its putative improvement in accident resistance, due to slow reactions with water, even at high temperatures. But, fuel management performance will also be an important consideration in its commercial acceptance. Whether backfittable 18- and 24-month cycles can be designed for existing light water reactors, their enrichments, operating characteristics, and fuel costs are questions that the present study undertakes to answer. Also evaluated is the possibility of leveraging silicon carbide's ability to sustain higher fuel duty for increasing power levels and discharge burnups in pressurized water reactors. A preliminary design using fuel rods with the same dimensions as in typical Westinghouse fuel, but with fuel pellets having a 10 vol % central void, has been adopted to mitigate the higher fuel temperatures when silicon carbide is used. This allows design of 18- and 24-month cycles that meet present-day operating constraints on peaking factor, boron concentration, reactivity coefficients, and shutdown margin, while achieving batch average discharge burnups up to 80 MWd/kg U, as well as power uprates of 10% and possibly 20%. Control rod configuration modifications may be required to meet the shutdown margin criterion for the 20% uprate. For nonuprated cores, silicon carbide–clad fuel may have a fuel cost advantage, especially with increasing discharge burnup, provided the fuel manufacturing cost is close to that of Zircaloy tubes. The economics of the fuel cycle also improve with power uprates, as the value of the additional energy generated may substantially exceed the advantage from fuel cost alone.