ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Akiyoshi Obonai, Takao Watanabe, Kazuo Hirata
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 280-294
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-61
Articles are hosted by Taylor and Francis Online.
This paper describes the emergency response of the Onagawa nuclear power station (NPS) on March 11, 2011, and the primary factors that allowed the Onagawa NPS to reach a state of cold shutdown, even though it suffered the highest ground acceleration and tsunami, comparable to those at the Fukushima Daiichi NPS. There was no release of radioactive material to the environment despite damage to several pieces of equipment, such as the toppling of a heavy oil tank, short-circuiting of non–safety-related high-voltage metal-clad switchgear, and internal flooding of the reactor auxiliary building. While we conducted the plant control, people who lived in the neighborhood of the NPS, whose residences had been damaged by the tsunami, came to the plant seeking shelter and help with evacuation. We accommodated them in the on-site gymnasium and provided necessities such as food and blankets. Within several days, the number of evacuees increased and surpassed 360, and we lived with them for nearly 3 months. The key points for safe cold shutdown were first, the plant site grade was higher than the maximum tsunami height and, second, an emergency diesel generator for each unit and one of the off-site electrical power lines remained available. In addition to these factors, preparedness (such as seismic reinforcements for all units, updating of tsunami predictions where appropriate, and regular fire drills and simulator training for loss of off-site-power) contributed greatly. However, we must still achieve higher standards of safety. First, we must conduct a detailed evaluation of the March 11 earthquake and tsunami and take necessary actions based on this evaluation. Second, we have to take proper countermeasures against severe accidents. We have learned many lessons from the Fukushima Daiichi accident, and we will continue to make efforts in order to avoid a similar severe accident again.