ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Jeffrey Cardoni, Randall Gauntt, Donald Kalinich, Jesse Phillips
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 179-197
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-41
Articles are hosted by Taylor and Francis Online.
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty due to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. The MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.