ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Peter P. Cebull, Yassin A. Hassan
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 327-337
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A35081
Articles are hosted by Taylor and Francis Online.
A small-break loss-of-coolant accident experiment conducted at the PMK-2 integral test facility in Hungary is analyzed using the RELAP5/MOD3.1 thermal-hydraulic code. The experiment simulated a 7.4% break in the cold leg of a VVER-440/213-type nuclear power plant as part of the International Atomic Energy Agency’s Fourth Standard Problem Exercise (SPE-4). Blind calculations of the exercise are presented, and the timing of various events throughout the transient is discussed. A posttest analysis is performed in which the sensitivity of the calculated results is investigated. The code RELAP5 predicts most of the transient events well, although a few problems are noted, particularly the failure of RELAP5 to predict dryout in the core even though the collapsed liquid level fell below the top of the heated portion. A discrepancy between the predicted primary mass inventory distribution and the experimental data is identified. Finally, the primary and secondary pressures calculated by RELAP5 fell too rapidly during the latter part of the transient, resulting in rather large errors in the predicted timing of some pressure-actuated events.