ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Nien-Mien Chung, Wei-Keng Lin, Bau-Shei Pei, Yih-Yun Hsu
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 80-89
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34705
Articles are hosted by Taylor and Francis Online.
Wave propagation in a homogeneous, low void fraction, two-phase air-water bubbly flow is analyzed through the compressibility of a single bubble to derive a P( -p) relation; the dispersion relation is then derived by a homogeneous model. The phase velocity and attenuation calculated from the model are compared with existing data and are in good agreement. The momentum transfer effect is considered through the virtual mass term and is significant at a higher void fraction. The interfacial heat transfer between phases is significant at low frequency, while bubble scattering effects are important at high frequency (near resonance). Bubble behavior at both low and high frequency is derived based on the isothermal and the adiabatic cases, respectively. The phase velocity occurs at the limiting condition in both cases. Furthermore, resonance is present in the model, and the resonant frequency is determined.