ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Fu-Long Chen, Shih-Hai Li
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 215-225
Technical Paper | Radioacitive Waste Management | doi.org/10.13182/NT90-A34416
Articles are hosted by Taylor and Francis Online.
To analytically predict the transport of radionuclides in porous media, it is necessary to develop a complete mathematical model. This means that the mechanisms must be described and the governing equations derived, along with their general solutions for the transport processes. The four major mechanisms—ad-vection, dispersion, adsorption-desorption and ion exchange, and degradation—are physically described and mathematically modeled. Based on the classic principle of mass conservation in a control volume, the governing equation for the transport of radionuclides in porous media is derived, which may be called the advection-dispersion equation. Some general solutions of the governing equation are obtained by using constant dispersion coefficients. In addition, some ambiguities of the advective-dispersion equation are solved, and this equation is extended to fractured media.