ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Nuclear energy: The decade of deliverability
Despite the emergence of new projects, technologies, and commercial ventures, the rate of actual deployment worldwide has been relatively slow—but not necessarily for the reasons people might think.
Toshihiko Ohnuki, Tadao Tanaka, Hiromichi Ogawa, Tadatoshi Yamamoto
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 55-63
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT89-A34336
Articles are hosted by Taylor and Francis Online.
The relationship of the retardation factor of a radionuclide for undisturbed soil and that for disturbed soil has been investigated. The migration model is based on the assumption that both reactive (dynamic) and nonreactive (stagnant) sites exist in the soil column. The retardation factor for undisturbed soil is represented by the following equation:Rfu = Su/SdRfd ,where Rfu and Rfd are retardation factors for undisturbed and disturbed soil, respectively, and Su and Sd are degrees of water saturation in undisturbed and disturbed soils, respectively. The migration experiments for both the undisturbed and disturbed soil columns were carried out using 85Sr. The average retardation factor for the undisturbed soil is smaller than that for disturbed soil, and the degree of water saturation in the undisturbed soil column is smaller than that in the disturbed soil column. The retardation factor for the undisturbed soil estimated, based on the above equation, is approximately the same as the measured retardation factor for the undisturbed soil.