ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Akio Yamamoto
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 63-75
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT03-A3429
Articles are hosted by Taylor and Francis Online.
In this paper, neural networks are used to predict core characteristics, and the predicted results are used to screen poor loading patterns in order to improve optimization efficiency. The radial peaking factor, cycle length, and maximum burnup through the cycle depletion calculations were evaluated by the neural network, and these core characteristics were used for screening. The screened loading patterns were evaluated by the core calculation code as ordinary in-core optimizations. The calculation results of the test problem indicated that the loading pattern screening using the neural network effectively improves the optimization results. Since the computation time for a cycle depletion calculation with the neural network is quite short, the computation load for the screening is negligible. Since the neural network is periodically retrained using the latest evaluation results of the core calculation code, its prediction accuracy is continuously improved during the optimization. The typical prediction accuracies of the radial peaking factor, cycle length, and maximum burnup in the latter part of the optimizations were 3 to 4%, 0.01 to 0.02 GWd/t, and 0.2 GWd/t, respectively, in the test problem. These accuracies are satisfactory for loading pattern screening.