ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
ED Von Halle, Houston G. Wood III, Ralph A. Lowry
Nuclear Technology | Volume 62 | Number 3 | September 1983 | Pages 325-334
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT83-A33256
Articles are hosted by Taylor and Francis Online.
A vacuum exists in the central region of the cylindrical rotor of a high-speed countercurrent gas centrifuge when operated with UF6for the enrichment of uranium. Since solutions of the Navier-Stokes equation are used to determine the isotopic distribution in the rotor, the location of the vacuum core boundary has a direct effect on the predicted separative work of the gas centrifuge. Because criteria for terminating the continuum region based on the Knudsen number are somewhat arbitrary, an approximate model developed by Onsager, which yields an analytical solution, has been used to evaluate the location of the boundary of the vacuum core more correctly. The results show that the location of this “top of the atmosphere,” in density scale heights, changes with the peripheral speed of the centrifuge. Using this location in the calculation of separation performance parameters of the gas centrifuge reduces, at the higher peripheral speeds, the contribution of axial diffusion to the effective stage length of a theoretical stage in the centrifuge. The correction due to imposing the top of the atmosphere limitation on axial diffusion becomes significant at high speeds and low countercurrent circulation rates.