ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Proposed rule for more flexible licensing under Part 53 is open for comment
The Nuclear Regulatory Commission has published a proposed rule that has been five years in the making: Risk-Informed, Technology-Inclusive Regulatory Framework for Advanced Reactors. The rule, which by law must take its final form before the end of 2027, would let the NRC and license applicants use technology-inclusive approaches and risk-informed, performance-based techniques to effectively license any nuclear technology. This is a departure from two licensing options with light water reactor–specific regulatory requirements that applicants can already choose.
Filippo D’Annucci, Elma Beth S. Pardue, Wilfried Rommelaere, Günter Bäro
Nuclear Technology | Volume 59 | Number 1 | October 1982 | Pages 9-13
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A33048
Articles are hosted by Taylor and Francis Online.
To investigate the tritium content in the various components and to determine the 10B burnup, a postirradiation examination was carried out on three burnable poison rods that had been irradiated in the first cycle of the Oconee 2 Reactor. The results of the analysis reveal that the Al2O3-B4C pellets retain the major portion 099%) of all the tritium generated; only a very small quantity (<0.5%) of the tritium produced is absorbed by the cladding and no tritium was detected in the plenum gas. Comparison of the average postirradiation 10B content with the preirradiation content indicates that almost all of the 10B has been consumed. The experimental results are in good agreement with the calculated tritium content of an irradiated poison rod.