ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. R. Gilbert, B. A. Chin
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT81-A32670
Articles are hosted by Taylor and Francis Online.
A nationally based program with the U.S. Department of Energy on in-reactor creep studies has produced experimental results that are being used for design and performance analyses of fast breeder reactors. These programs enabled the development of experimental methods that have produced copious in-reactor creep data over a broad range of conditions that include neutron fluences up to 1 X 1023 n/cm2 and temperatures as high as 750°C. These tests have revealed that contrary to guidance provided by post-irradiation creep tests, deformation during neutron irradiation does not impair the stress-to-rupture properties. Temperature- and stress-change experiments have been conducted to simulate the effects of nonsteady-state conditions existing in an operating reactor. The results show that the irradiation creep behavior is rather insensitive to stress and temperature history. In contrast, swelling is highly sensitive to temperature reductions that occur during irradiation. These studies have been conducted primarily on AISI Type 316 stainless steel although a broad base has been initiated on other alloys. The impact of these results is that irradiation creep at high temperature and high neutron fluences is larger than anticipated from early low fluence and low temperature data on AISI Type 316 stainless steel. Consequently, there is a high level of interest in advanced alloys that are more resistant to irradiation creep than is the AISI Type 316 stainless steel. Advanced alloys of the precipitation-strengthened nickel base class as well as low nickel ferritic steels are being investigated as alternates to AISI Type 316 stainless steel for specific core applications. A diverse range in resistance to in-reactor creep has been found, with Inconel 706 providing very high resistance and PE16 providing an intermediate level of resistance.