ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. N. Chung, P. S. Ayyaswamy
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 603-610
Technical Paper | Reactor | doi.org/10.13182/NT77-A31869
Articles are hosted by Taylor and Francis Online.
Heat removal rates from containment spray droplets following a loss-of-coolant accident in a nuclear reactor have been calculated by three different droplet models: the complete mixing model, the model with internal circulation, and the rigid sphere. Irrespective of the model, the thermalization time is found to increase with increasing droplet size. It is noticed that the thermalization times predicted by the complete mixing and nonmixing models either underestimate or overestimate the value provided by the internal circulation model. It is concluded that the effect of internal circulation cannot be ignored in estimating heat removal rates from spray droplets.